## Part 1: Definitions

- A $\qquad$ triangle is a triangle that has one angle that is $\qquad$ degrees (also called a right angle).

A right triangle has $\qquad$ legs. The sides that are not the $\qquad$ are the legs of the triangle.

Hypotenuse is the $\qquad$ side of a right triangle. It is always the side $\qquad$ from the right angle.

Label the hypotenuse and the legs on the right triangles.


## Part 2: Drawing Right Triangles

Before you draw triangles you need a ruler (or something with a straight edge like a compass card). Please make sure to label all sides and also the right angle.

Let's draw a right triangle with legs of 3 units and 4 units. The hypotenuse is 5 units. Remember, the hypotenuse is the longest side of the triangle. The legs are the two shorter sides.

| Diagram of Right Triangle $(3,4,5)$ | Calculations of $a^{2}, b^{2}$, and $c^{2}$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

In right triangle trigonometry, it is also best to label the legs as $a$ and $b$. The hypotenuse is labelled as $c$. Please add those labels to your picture. In the second column please calculate $a^{2}, b^{2}$, and $c^{2}$. Do you notice a pattern with your calculations?

Now draw the following right triangles and also do the following calculations.

| Diagram of Right Triangle |  |
| :--- | :--- |
| Legs: 6,8 <br> Hypotenuse: 10 |  |
|  |  | | Legs: 5,12 |
| :--- |
| Hypotenuse: 13 |
|  |
| Legs: 12,16 |
| Hypotenuse: 20 |

## Part 3: Conclusion

What's the pattern with your calculations of $a^{2}, b^{2}$, and $c^{2}$ ? What do you think the missing area of the square in this diagram? What happens if you add the areas of the smaller squares?


Write your final conclusion/equation for the PT:

## Part 4: Pythagorean Triplets and Calculating Sides of a Right Triangle

Pythagorean triples are whole number values of $a, b$, and $c$ that give you whole number calculations of $a^{2}, b^{2}$, and $c^{2}$. They are convenient to know. As you've learned from part 3, you now know the pattern/equation of the Pythagorean Theorem. You can also manipulate the equation in two ways:

The original equation, $\qquad$ can be rearranged into:
and $\qquad$
Finally, if you know the 2 sides of a right triangle you can always calculate the missing third side.

## Practice: Include a diagram and SHOW ALL WORK for each question

1. A right triangle has legs of 12 and 15 . What is the measurement of the hypotenuse? Draw and label your triangle first before solving. Round your final answer to one decimal place.
2. A right triangle has a leg of 8 and a hypotenuse of 12 . What is the length of the other leg? Please round your answer to the nearest whole number.
3. A ladder that is 10 ft . long leans against a wall. It is 3 ft . from the wall. How high against the wall does the ladder reach? Please draw a labelled diagram and solve. Round your final answer to one decimal place.
