Sec 5.6/5.7 - Equivalent Ratios and Comparing Ratios

1. Equivalent Ratios

Equivalent ratios have the same value if we can multiply_ or divide every term in the ratio by the same number.
We can show this with the terms of the ratios in rows.

2:3
4: SAME!

We can show this with the terms of the ratios in columns.

$$
\begin{aligned}
& 1: 1.5 \\
& 2: 3 \\
& 4: 6 \\
& 8: 12 \\
& 16: 24 \\
& 32: 48 \\
& 64: 96
\end{aligned}
$$

$$
112
$$

A ratio will be in simplest form when its terms have \qquad no common factor. Practice
In Ms. Lo's chase 60 people have the flu 20 are recovering, and 12 re immune. Assuming that Simple of . the rest of the school is equally susceptible to the flu, give 3 equivalent ratios of people with the $\sim \sim$. flu, recovering and immune.
part to part ratio

$$
\left.\begin{array}{l}
60: 20: 12 \\
30: 10: 6 \\
15: 5: 3
\end{array}\right\} \text { equivalent ratios! }
$$

2. Comparing Ratios

Example - Ali Oop scored 10 free throws in 18 shots. Steve Nash scored 14 free throws and missed 10 . Which player has the better free throw record?

There are 3 different strategies of showing thinking for this problem and to compare ratios:

1) Use equivalent part-to-part ratios to find one common term.

Scored shots: missed shots.

$2.5: 2$
$2.8: 2$
4
Steve did
betur $\longrightarrow 112: 80$
Bigger. : Steve Nash did better.
2) Use equivalent part-tof whole ratios to find one common term.

Scored shot: total shots.
$\left.\begin{array}{l|l}\text { Ali Hop: 10:18 } & \begin{array}{c}3.33: 6 \\ \text { Steve Nash: 14: } 24\end{array} \\ \begin{array}{c}3.5: 6 \\ 4\end{array}\end{array}\right\} \begin{aligned} & \text { common } \\ & \text { factor! }\end{aligned}$
Steve Nash did better.'
3) Compare usingunitiatios - a ratio where one of the values is equal to one.

- initratios

$$
0.55: 12
$$

Steve Nash $\sim 0.58: 1\}$ unit ratio!
did better

Practice

1) Show if the following ratios are equivalent:
a) $16: 30$ and $28: 42$
b) $12: 9$ and $44: 33$
lets use a common
lets use unit ratios. term.
$12: 9 \quad 44: 33$

$$
16: 30 \quad 28: 42
$$

$1.33: 1$
1.33: 1
$3.2: 6 \quad 4: 6$
No the y are not!
Yes they are!
2) You are painting your room, and can't decide between two shades of green. Option A is made by mixing 5 cans of green paint with 3 cans of white paint. Option B is made by mixing 7 cans of green paint with 4 cans of white paint. Which option is the lighter shade of green? Choose one of the method from above to show your work.
green: white
Option A: 5:3
Option B: 7:4 $\left\{\begin{array}{c}20: 12 \\ 21: 12\end{array}\right\}$ common Ter.
let's use common ratios.'
(common tern).
So A is the lighter shade of green.
7_{3}^{3}) You have 2 recipes for chocolate chip cookies. Recipe A has 12 cups of batter per 2 cups of chocolate chips. Recipe B has 30 cups of batter per 3 cups of chocolate chips. Which recipe will make more chocolaty cookies? Choose one of the method from above to show your work.

Reope A: 2:12
chocolate: batter Recipe 8: 3: 30
let's use common ratios/
Using unit common term.
ratios:
1:6 +more chocolately!

$$
0.16: 1 \%
$$

$$
\frac{3}{5}: 6
$$

Sec 5.6/5.7 Equivalent and Comparing Ratios - Page 3 of 3

