Math 8

Name_	Key	
Date	l	

Sec 5.2 – Calculating Percents

There are 3 ways to interpret percents smaller than 1% and greater than 100%:

1) pattern-spotting

Decimal		Percent
0.0001	=	0.01%
0.001		0.1%
0.01	=	1%
0.1	=	10%
1.0	_	100%
1.01	=	101%
(.(0	=	110%

2) number line

e.g. $10\% = \frac{10}{100}$ b) 120% Somewhere here

* Note: All percents can be written as fractions

out of 100.

3) hundreds chart

Ì Ì	İΤ	Τ	Π	П	ÌП
	Π			Lİ	\Box
	I.				
	<u>.</u>			\downarrow	
	$\left \right $		┝╌┠╌	44	+
	+			+	+
		+	$\left \cdot \right $	+	
\vdash		-		++	
	11	1	Ħ	$^{++}$	

<u>Practice 1</u> – Shade in the hundred charts to illustrate the percent

L \	1050/	
111	19.170	

					Ĺ
				Ľ	
L					
	L				
	Ľ				
	<u> </u>				[
<u> </u>					

						ſ
					ľ	
						ŀ
		· .				
						ļ
	ļ.					
	ŀ.	۱.				ŀ

<u>Using Percents to solve Problems</u> Example 1

1. If your best friend has 2400 songs on his/her iPod, and you have ³/₄ songs, how many songs do you have? Show your calculations.

$$\frac{3}{4} \times 100\% = 75\%$$
 So $2400(0.75) = 1800$
Sonas

2. What does "of" mean in math usually?

multiply you can also use
$$\frac{x}{2400} = \frac{75}{100}$$

Example 2

3. The actual cost to make a new laptop is \$150, but the selling price is actually 150 % of that. What is the selling price of the coat?

Practice

1) The cost to make a winter coat is \$70, but the selling price is actually 230% of that. What is the selling price of the coat?

2) In 2004, the population of First Nations people living on reserves in Alberta was approximately 60,000. About 0.25% of these people belonged to the Cree band. About how many people belonged to this band?

$$\frac{0.25}{100} = \frac{x}{60000} \quad x = 150 \text{ people} .$$

 Initially, there were 120 infected by measles. By the second day, the infected population increased by 5%. How many people were infected in total on the second day? (Assume the people on the first day are still infected.)

$$\frac{5}{100} = \frac{x}{120}$$
 X = 6
So 126 people!