Math	8
------	---

Name KEY
Date

Sec 4.6 - Creating a Table of Values Notes

1. Investigation

At the Steveston Fair, Mischa sells hot dogs for \$3 each and drinks for \$2 each. A meal consists of hot dogs and only one drink.

- a) How much would a meal of one hot dog and one drink cost? 83 + 2 = 5
- b) How much would a meal of two hot dogs and one drink cost? 2(3) + 2 = 8
- c) How much would a meal of three hot dogs and one drink cost? 3(3) + 2 = 11
- d) How much would a meal of nine hot dogs and one drink cost? q(3) + 2 = 2q
- e) How many hot dogs can be ordered when a meal costs \$35?

Questions

1) Write an algebraic equation that relates the number of hot dogs ordered to the total cost of the meal. Identify the variables.

C=3x+2
3=numerical coefficient

Organize your information in a table of values where the first column represents the

2) Organize your information in a table of values where the first column represents the number of hot dogs ordered and the second column represents the total cost of the meal. 2= canstant

st of not doos	<u>cort</u>
	5
2	X
3	
4	ÌЧ
8	Ė
6	2-0
7	23
3	Ł.L.
9	7.9
10	32
11	2 (***

You can make an eqt! just by looking at the table $(\times 3=(3)) \text{ if we add}$ $2\times 3=(6) \text{ if we add}$ $2\times 3=(6) \text{ if we add}$ $3\times 3=(9) \text{ get } 5,8,11$

Constant=

3) State any patterns that you see in your table. For The total cost goes up by \$3'every additional hot day.

Wote: The numerical coefficient is also 3. C=3x+2

Summary:

When you know the total cost of a meal, how can you determine the number of hot dogs ordered?

Johne using reverse BEDMAS.

35=3x+2

33=3x

x=11 hot dogs.

When one value is related to another value, we can write a mathematical relationship to relate the two called a relation

Example - Write the relation between the number of hot dogs ordered to the total cost of the meal.

The Normal M of the relation is h and the Normal M of the relation is 3h + 2.

To organize our input and output, we can write a table of values horizontally or vertically:

ì	h	Bill House	sang :	3		5
	C	5	8	No.	(4	17

We can say that the input and output is a pair of numbers called an

ordered price.

h	C
	5
L	8
3	(1
4	4
S	(7

Some ordered pairs for the hot dog example are:

$$(1,5), (2,8), (3,11), (4,14), (5, (7), (h, C))$$

Often, relations are written with x as the input and y as the output.

Eg.
$$y = 2x$$
 $y = x + 6$ $y = -2x + 1$

Practice

1. Make a table of values for the relation y = 2x.

x	-3	-2	-1	0	1	2	3	4
у	-6	-4	-2	٥	e L	Ч	6	8

2. Make a table of values for the relation y = -5x - 3.

	X	-3	-2	-	٥		7	3
ļ	_	12	7	Z	-3	- 8	- 13	-(8

3. The equation of a linear relation is y = -3x + 2. Find the missing numbers in the following ordered pairs. Show how you find the missing ordered pair.

$$y = -3(-1)+2$$
 $y = -3(-1)+2$ $-7 = 3x+2$ $-(3 = -3x+2)$
= $3+2$ $y = -3+2$ $-9 = -3x$ $-15 = -3x$
= 5 = -1 $3 = x$ $5 = x$