Math 8
Sec 4.6 -Creating a Table of Values Notes

Name \qquad
Date \qquad

1. Investigation

At the Steveston Fair, Mischa sells hot dogs for $\$ 3$ each and drinks for $\$ 2$ each. A meal consists of hot dogs and only one drink.
a) How much would a meal of one hot dog and one drink cost?

$$
\$ 3+\frac{\$}{8}=5
$$

b) How much would a meal of two hot dogs and one drink cost?

$$
2(3)+2=8
$$

c) How much would a meal of three hot dogs and one drink cost?

$$
3(3)+2=11
$$

d) How much would a meal of nine hot dogs and one drink cost?
e) How many hot dogs can be ordered when a meal costs $\$ 35$?

Questions

$$
35=x(3)+2 \therefore 11 \text { hot dogs }
$$

1) Write an algebraic equation that relates the number of hot dogs ordered to the total cost of the meal. Identify the variables.

$$
C=3 x+2
$$

$$
c=\cos t
$$

2) Organize your information in a table of values where the first column represents the number of hot dogs ordered and the second column represents the total cost of the meal. $2=\operatorname{con}$ hun

of hot log	cos 1
1	5
2	8
3	11
4	14
5	19
6	20
7	23
8	26
9	29
10	32
11	28

you can make an eq? just by looking at the table

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
1 \times 3=(3) \\
2 \times 3=(6)
\end{array}\right\} \begin{array}{l}
\text { if we add } \\
3 \times 3=(9)
\end{array}\right\} \begin{array}{l}
\text { gen } y, 80 \\
\text { get } 5,8,11
\end{array}
\end{aligned}
$$

3) Sate any patenstatary sone ex inyor table. for

The total cost geo qu by by $3^{\text {'every }}$ additional hot dog.
Note: The numerical coefficient is also 3 .
Summary:
When you know the total cost of a meal, how can you determine the number of hot dogs ordered?

$$
35=3 x+2
$$

When one value is related to another value, we can write a mathematical relationship to relate the two called a \qquad .
Example - Write the relation between the number of hot dogs ordered to the total cost of the meal.

The IMPUT of the relation is h and the \qquad about of the relation is $3 h+2$.
To organize our input and output, we can write a table of values horizontally or vertically:

h	1	2	3	4	5
C	5	8	11	14	19

We can say that the input and output is a pair of numbers called an ordered .

h	C
1	5
2	8
3	11
4	14
5	19

Some ordered pairs for the hot dog example are:

$$
(1,5),(2,8),(3,11),(4,14),(5,17),(h, C)
$$

Often, relations are written with x as the input and y as the output.

$$
\text { Eg. } y=2 x \quad y=x+6 \quad y=-2 x+1
$$

Practice

1. Make a table of values for the relation $y=2 x$.

x	-3	-2	-1	0	1	2	3	4
y	-6	$-y$	-2	0	2	4	6	8

2. Make a table of values for the relation $y=-5 x-3$.

x	-3	-2	-1	0	1	2	3
y	12	7	2	-3	-8	-13	-18

3. The equation of a linear relation is $y=-3 x+2$. Find the missing numbers in the following ordered pairs. Show how you find the missing ordered pair.
a) $(-1,5)$
b) $(1,-1)$
c) $(3,-7)$
d) $(5,-13)$

$$
\left.\begin{array}{rlrl}
y & =-3(-1)+2 & y=-3(1)+2 & -7
\end{array}\right)=3 x+2 \quad-13=-3 x+2
$$

