Ch. 1.1: Squares \& Square Roots

Look at the following numbers: 2, 4, 25, 27, 8, 10, and 64
a) Which numbers are perfect squares? Which ones are NOT perfect squares?
b) Draw a square to represent the square number 25 (like we did in class for 16).
c) Make a factor tree of 36 . Can you tell from the factor tree is 36 is a perfect square?

1. Modelling

We now know how to show that a number is a perfect square in 2 different ways. Show that 64 is a perfect square using each of our two methods:

DRAW A DIAGRAM	SHOW THAT THE PRIME FACTORS DIVIDE INTO 2 EQUAL GROUPS

Find the square root of 16 using each of our two methods:

DRAW A DIAGRAM	USE THE PRIME FACTORS

Close your eyes... Which of the 2 methods is easier for you to remember in your head?

2. Definitions

- The \qquad of a number represents the area of a square.
- The \qquad of a number represents the side length of a square.
- Therefore, squaring a number and square rooting a number are \qquad operations.
- We write the square root of a number like this:
- Give an example of 2 other operations that are INVERSE operations: \qquad and \qquad

In your own words, explain what an inverse operation is:

4. Practice!

a) Find $\sqrt{49}$ using prime factorization.
b) Is 50 the square root of 100 ? Show or explain your answer in 2 different ways.
c) Is 81 a perfect square? Is 40 a perfect square? (Use your preferred method.)
d) Determine the side length of a square with an area of $196 \mathrm{~cm}^{2}$. (Use your preferred method.)

