## Ch: 1.0 Square Numbers and Area Models Investigation

## 1) Modelling

Can you draw a "perfect" square with the following areas? If so, draw the square and label the side lengths.
a) 8
16
b) For which areas were you able to make a "perfect" square (with whole number side lengths)?
c) Why were you not able to make a "perfect" square (with whole number side lengths) with EVERY area?

## 2) Extension (Think for yourself!)

In addition to finding the area of a square we can also find the perimeter. We find perimeter by

Visualize a square with a side length of 3 . Its area is $\qquad$ . Its perimeter is $\qquad$ .

When you take a whole number (like 3) and multiply it by itself, you get the area. Since the area is also whole number, it is called a perfect square number.

Is 9 a perfect square number? $\qquad$
Is 12 a perfect square number? $\qquad$

Why does finding the perimeter give us a different type of \# than we get when we find the area?

## 3) Definition \& Notation

When you multiply a number by itself, you $\qquad$ the number.

## We can write this in MANY different ways!

## WORDS and MATHEMATICAL NOTATION

- Six $\qquad$ six is thirty-six.
- Six $\qquad$ is thirty-six.
- The $\qquad$ of 6 is $\qquad$ .
- $\qquad$ X $\qquad$ $=$ $\qquad$
$\bullet$ $\qquad$ = $\qquad$


## 4) Practice!

a) Draw two squares and label the side lengths (they must have a side length of greater than 6). Calculate the AREA of each square. Are they perfect square numbers? Show your work and include units!
b) Find \& record the PERIMETER of each square. Are they perfect square numbers? Show your work and include units!

## 5) Summary - Identifying the BIG Ideas

A perfect square number can always be represented by an area of a square with side lengths that are $\qquad$ .

Squaring a number means $\qquad$ .

The difference between find the area of a square \& the perimeter of a square is

