\qquad Date: \qquad Block: \qquad
8.3 Number of Solutions

Bell Work

1. Systems of linear equations two or more linear equations involving common variables
2. Point of Intersection \qquad a point at which two lines touch or cross
3. Solution a point of intersection of the lines. on a graph; an ordered pair that satisfies both equations; a pair of values occurring in the tables of values of both equations

Key Ideas

Example 1: Determine the number of solutions in a linear system.
a) $x+y=-2$

$$
-2 x-2 y=4
$$

Rearrange + find the Slopes!

$$
\begin{aligned}
& x+y=-2 \\
& -y=-x-2
\end{aligned}
$$

$$
\begin{aligned}
& -2 x-2 y=4 \\
& -2 x-4=2 y \\
& -x-2=y
\end{aligned}
$$

Wow! Same
\therefore infinite sol y.
b) $3 x+y=-1$

$$
-6 x-2 y=12
$$

$$
G \begin{array}{ll}
3 x+y=-1 & -6 x-2 y=12 \\
y=-3 x-1 & -6 x-12=2 y \\
-3 x-6 & =y
\end{array}
$$

parallel lines.

$$
\therefore \text { no } 801^{n} \text {. }
$$

Example 2: Given the equation $-2 x+y=4$, write another linear equation that will form a linear system with:
a) exactly one solution \longrightarrow Rearrange $y=2 x+4$.
Intersecting lines $\rightarrow y=3 x+1 \quad$ (different slopes +
b) no solution

Parallel lines $\rightarrow y=2 x+3$ (same slopes, different intercepts)
c) infinite solutions

$$
\text { Coincident lines } \rightarrow y=2 x+4 \text { (same slope, same intercept) }
$$

Your Turn

1. Determine the number of solutions in a linear system.
a) $x+y=3$ $-2 x-y=-2$
b) $2 x-4 y=-1$
$3 x-6 y=2$
2. Given the equation $-6 x+y=3$, write another linear equation that will form a linear system with:
a. Exactly one solution
b. No solution
c. Infinite solutions
