\qquad
\qquad Block: \qquad

8.3 Number of Solutions

Bell Work

1. \qquad two or more linear equations involving common variables
2. \qquad a point at which two lines touch or cross
3. \qquad a point of intersection of the lines on a graph; an ordered pair that satisfies both equations; a pair of values occurring in the tables of values of both equations

Key Ideas

				$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	
Lines that are on top of each other. They all share the same points! Infinite solutions, same slope, same y-intercept	No solution, same slope, different yintercepts	One solution, different slopes, different yintercepts			

Example 1: Determine the number of solutions in a linear system.
a) $x+y=-2$
b) $3 x+y=-1$
$-2 x-2 y=4$
$-6 x-2 y=12$

Example 2: Given the equation $-2 x+y=4$, write another linear equation that will form a linear system with:
a) exactly one solution
b) no solution
c) infinite solutions

Your Turn

1. Determine the number of solutions in a linear system.
a) $x+y=3$
$-2 x-y=-2$
b) $2 x-4 y=-1$
$3 x-6 y=2$
2. Given the equation $-6 x+y=3$, write another linear equation that will form a linear system with:
a. Exactly one solution
b. No solution
c. Infinite solutions
