8.1 Solving Linear Systems Graphically

Bell Work:

Ms. Lo went to her favourite Starbucks on Lonsdale and 3rd and spent \$11.50. A brownie costs \$3.50 and she bought two coffees. What was the cost of a coffee?

- a) Define your variables. Write "let" statements (i.e. define your independent and dependent variables).
- b) Write an algebraic equation to represent the problem (i.e. make sure both variables are in the equation).
- c) Solve your equation.

Therefore, one coffee costs \$_____.

Vocabulary:

Term	Definition
	A point at which two lines touch or cross
	Two or more linear equations involving common variables
	 a point of intersection on a graph an ordered pair that satisfies both equations a pair of values occurring in the tables of values of both equations

Example 1: Paden already has \$10 in his savings account while his sister Lucca has \$5. Both of them have just started new jobs. Each day they work Paden adds \$10 to his savings, while Lucca adds \$5.

a) Fill in the table of values:

Paden's Total Savings:

Day	Total Savings (\$) 10
0	10
1	
2	
3	
4	
5	

Lucca's Total Savings:

Day	Total Savings (\$)
0	5
1	
2	
3	
4	
5	

- b) Write an equation to represent Paden's total savings and Lucca's total savings. Write "let" statements (i.e. define your independent and dependent variables).
- c) The siblings want to know if they will ever have the same amount of money. If so, what will the amount be and on what day?
- > Therefore the **solution** (x, y) to this system of linear equations is: ______.
- > That means that both equations if graphed will **intersect** at the point: ______.

<u>Example 2</u>: Consider the system of linear equations 2x + y = 2 and x - y = 7. Identify the point of intersection of the lines by graphing. Verify the solution using LS/RS.

Example 3: A red tram carries passengers down Grouse Mountain in Vancouver. It travels from an altitude of about 1100 m to an altitude of 300 m. The ride takes 5 min. There is also a blue tram that can go up the mountain in 8 min.

Sketch a graph to represent the system involving the trams' altitudes and times.

Tram		Red	Blue
Start	Time		
	Altitude		
End	Time		
	Altitude		
Graph			

Practice:

Example 4: Deborah already has \$40 in her savings account while her brother Josh has \$50. Both of them have just started new jobs. Each day they work Deborah adds \$10 to her savings, while Josh adds \$8.

a) Fill in the table of values:

Deborah's Total Savings:

Day	Total Savings (\$) 40
0	40
1	
2	
3	
4	
5	

Josh's Total Savings:

_	
Day	Total
	Savings (\$)
0	Savings (\$) 50
1	
2	
<u>^</u>	
3	
4	
I I	
5	

b) Write an equation to represent Deborah's total savings and Josh's total savings. Write "let" statements (i.e. define your independent and dependent variables).

- c) The siblings want to know if they will ever have the same amount of money. If so, what will the amount be and on what day?
- > Therefore the **solution** (x, y) to this system of linear equations is: ______.
- > That means that both equations if graphed will **intersect** at the point: ______.

Example 5: What is the solution to the systems of linear equations x - 3y = 9 and 2x + y = 4? Verify the solution.

Example 6: For each system of linear equations, verify whether the given point is a solution.

a.	3x - y = 2 x + 4y = 32	b. 2x + 3y = -12 4x – 3y = -6
	(2, 5)	(-3, -2)