Date:

5.4 Factoring Special Polynomials

When we multiply a binomial by itself, we square the binomial. The result is a polynomial called the perfect square trinomial.

Examples:

 $(a + 4)^2 = (a + 4)(a + 4)$ $(t - 3)^2 = (t - 3)(t - 3) = t^2 - 6t + 9$

 $(5n + 3)^{2} = (5n + 3)(5n + 3) = 25n^{2} + 30n + 9$

Each trinomial is a perfect square trinomial!

There are special binomial products that produce binomials. The result is a polynomial called difference of squares.

Examples:

$$(x + 4)(x - 4) = x^{2} - 4x + 4x - 16$$
$$= x^{2} - 16$$
$$(5n + 3)(5n - 3) = 25n^{2} - 15n + 15n - 9$$
$$= 25n^{2} - 9$$

Each binomial result is a difference of squares!

Two rules about factoring special polynomials you should know:

- 1. Perfect square trinomials, $a^2 + 2ab + b^2$ and $a^2 2ab + b^2$, factor into $(a + b)^2$ and $(a b)^2$, respectively;
- 2. Difference of squares, $a^2 b^2$, factor into (a + b)(a b).

Example 1: Factoring Difference of Squares

Factor each binomial, if possible.

a)
$$x^2 - 64$$
 b) $4v^2 - 49$ c) $7a^3b^2 - 28a^5$

c) $x^2 - 100$ d) $25h^2 - 81$

Math 10	Name:	Date:	Block:
Example 2: Factoring Perfect Square Trinomials			
Factor each trinomial			
a) x ² + 6x + 9		b) 25n ² + 20n + 4	

c) r² + 6r + 9

d) 9m² – 12m + 4

Homework:

P. 246 # 1(ALL)

#2 – 7 (pick 3)

#8 – 11

#13, 15, 17