5.4 Factoring Special Polynomials

When we multiply a binomial by itself, we square the binomial. The result is a polynomial called the perfect square trinomial.

Examples:

$(a+4)^{2}=(a+4)(a+4)$
Each trinomial is a perfect
square trinomial!
$(\mathrm{t}-3)^{2}=(\mathrm{t}-3)(\mathrm{t}-3)=\mathrm{t}^{\mathbf{2}} \mathbf{- 6 t + 9}$
$(5 n+3)^{2}=(5 n+3)(5 n+3)=\mathbf{2 5} n^{2}+\mathbf{3 0}+\mathbf{9}$

There are special binomial products that produce binomials. The result is a polynomial called difference of squares.

Examples:

$$
\begin{array}{rlr}
(x+4)(x-4) & =x^{2}-4 x+4 x-16 & \begin{array}{r}
\text { Each binomial result is a } \\
\text { difference of squares! }
\end{array} \\
& =x^{2}-\mathbf{1 6} & \\
(5 n+3)(5 n-3) & =25 n^{2}-15 n+15 n-9 & \\
& =25 n^{2}-9 &
\end{array}
$$

Two rules about factoring special polynomials you should know:

1. Perfect square trinomials, $a^{2}+2 a b+b^{2}$ and $a^{2}-2 a b+b^{2}$, factor into $(a+b)^{2}$ and $(a-b)^{2}$, respectively;
2. Difference of squares, $a^{2}-b^{2}$, factor into $(a+b)(a-b)$.

Example 1: Factoring Difference of Squares

Factor each binomial, if possible.
a) $x^{2}-64$
b) $4 v^{2}-49$
c) $7 a^{3} b^{2}-28 a^{5}$
c) $x^{2}-100$
d) $25 h^{2}-81$

Example 2: Factoring Perfect Square Trinomials

Factor each trinomial
a) $x^{2}+6 x+9$
b) $25 n^{2}+20 n+4$
c) $r^{2}+6 r+9$
d) $9 m^{2}-12 m+4$

Homework:
P. 246 \# 1(ALL)
\#2-7 (pick 3)
\#8-11
\#13, 15, 17

