Math 10

5.3 Factoring Polynomials

How to Factor

Here are a few guidelines to follow when factoring polynomials:

- 1) Always ask yourself if you can first remove a GCF
- After removing the GCF, ask yourself if you can factor using <u>strategy 1 (ac and b) or strategy 2</u> (grouping). If you can't then the polynomial is <u>"prime"</u> which means it cannot be factored. If you can, then continue.

Example 1: Factor Trinomials of the Form $ax^2 + bx + c$, a = 1

Factor $x^{2} + 12x + 20$

Step 1: Ask yourself if you can remove a GCF

Step 2: There are two strategies for this type of polynomial (the leading coefficient *a* is 1) Choose the strategy you are most comfortable with and factor.

Strategy 1 (Using ac and b)

- Ask yourself "what two numbers multiply to 20 and add to 12?" (Note: 20 is *ac* and 12 is *b*)
- The answer is ______. Therefore, your factors are ______.

You can verify by multiplying these binomials out. Note: if the signs in the trinomial are + / +, the binomials will both be_____.

1. Factor if possible.

a) $x^2 + 5x + 4$

b) $x^2 + 4x + 6$ c) $x^2 + 7x + 10$

Example 2:

Factor $x^2 - 2x - 48$

Step 1: Ask yourself if you can remove a GCF

Step 2: Ask yourself "what two numbers multiply to -48 and add to -2?"

The answer is ______. Therefore, your factors are ______.

You can verify by multiplying these binomials out. Note: if the signs in the trinomial are -/- or +/-, the signs in the binomials will be <u>one</u> and one.

Math 10	Name:	Date:	Block:				
2. Factor if possible.							
a) $x^2 - 3x - 28$		b) $x^2 + 7x - 30$					
Example 3:							
Factor $x^2 - 14x + 45$	5						
Step 1: Ask yourself if you can remove a GCF							
Step 2: Ask yourself "what two numbers multiply to 45 and add to -14?"							
The answer	is	Therefore, your factors are					
You can verify by multiplying these binomials out. Note: if the signs in the trinomial are -/+ , both signs in the binomials will be							
3. Factor if possible.							
a) x ² – 8x + 7							
Example 4: Factor Trinomials of the Form $ax^2 + bx + c$, $a > 1$							
Factor $6x^2 + 13x - 3$	5						
Step 1: Ask yourself	if you can remove	e a GCF					

Step 2: Ask yourself "what two numbers multiply to -30 and add to 13?"

• The answer is ______. In THIS case, you need to factor by **<u>GROUPING (Strategy 2).</u>**

Strategy 2 (Grouping)

Factor $6x^2 + 13x - 5$

- Can be written as $6x^2 2x + 15x 5$
- •

Done! Note: You can use the grouping strategy with all types of trinomials (Example 1 and 2).

Math 10	Name:	Date:		Block:
4. Factor, if possible.				
a) $3x^2 + 8x + 4$		b) $6x^2 - 5xy + y^2$	c) $24x^2 - 30x - 9$	

Example 5: Apply Factoring

The world famous Devil's Cauldron is the 4th hole at the Banff Springs Golf Course. The approximate height of the ball during a shot can be represented by the formula:

$$h = -5t^2 + 25t + 30$$

Where t = time in seconds, and h = height of the ball, in meters

- a) Write the formula in factored form.
- b) What is the height of the golf ball after 2.5 s?

Homework:

P. 234 # 1-7 (pick 3), #8, # 9-12 (pick 2), #15, 16