### 5.3 Factoring Polynomials

## How to Factor

Here are a few guidelines to follow when factoring polynomials:

1) Always ask yourself if you can first remove a GCF
2) After removing the GCF, ask yourself if you can factor using strategy $\mathbf{1}$ ( $a c$ and $b$ ) or strategy 2 (grouping). If you can't then the polynomial is "prime" which means it cannot be factored. If you can, then continue.

Example 1: Factor Trinomials of the Form $a x^{2}+b x+c, a=1$
Factor $x^{2}+12 x+20$
Step 1: Ask yourself if you can remove a GCF
Step 2: There are two strategies for this type of polynomial (the leading coefficient $a$ is 1) Choose the strategy you are most comfortable with and factor.

## *Strategy 1 (Using $\boldsymbol{a c}$ and $\boldsymbol{b}$ )*

- Ask yourself "what two numbers multiply to 20 and add to 12 ?" (Note: 20 is $a c$ and 12 is $b$ )
- The answer is $\qquad$ . Therefore, your factors are $\qquad$ .

You can verify by multiplying these binomials out. Note: if the signs in the trinomial are $+/+$, the binomials will both be $\qquad$ .

1. Factor if possible.
a) $x^{2}+5 x+4$
b) $x^{2}+4 x+6$
c) $x^{2}+7 x+10$

## Example 2:

Factor $\mathrm{x}^{2}-2 x-48$
Step 1: Ask yourself if you can remove a GCF
Step 2: Ask yourself "what two numbers multiply to -48 and add to - 2 ?"

- The answer is $\qquad$ . Therefore, your factors are $\qquad$ .

You can verify by multiplying these binomials out. Note: if the signs in the trinomial are -/- or +/- , the signs in the binomials will be one and one -.
2. Factor if possible.
a) $x^{2}-3 x-28$
b) $x^{2}+7 x-30$

## Example 3:

Factor $x^{2}-14 x+45$
Step 1: Ask yourself if you can remove a GCF
Step 2: Ask yourself "what two numbers multiply to 45 and add to -14 ?"

- The answer is $\qquad$ . Therefore, your factors are $\qquad$ .

You can verify by multiplying these binomials out. Note: if the signs in the trinomial are -/+ , both signs in the binomials will be $\qquad$ -.
3. Factor if possible.
a) $x^{2}-8 x+7$

## Example 4: Factor Trinomials of the Form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}, \mathrm{a}>1$

Factor $6 x^{2}+13 x-5$
Step 1: Ask yourself if you can remove a GCF
Step 2: Ask yourself "what two numbers multiply to -30 and add to 13 ?"

- The answer is $\qquad$ . In THIS case, you need to factor by GROUPING (Strategy 2).


## *Strategy 2 (Grouping)*

Factor $6 x^{2}+13 x-5$

- Can be written as $6 x^{2}-2 x+15 x-5$
- $\qquad$
- $\qquad$
Done! Note: You can use the grouping strategy with all types of trinomials (Example 1 and 2).

4. Factor, if possible.
a) $3 x^{2}+8 x+4$
b) $6 x^{2}-5 x y+y^{2}$
c) $24 x^{2}-30 x-9$

## Example 5: Apply Factoring

The world famous Devil's Cauldron is the $4^{\text {th }}$ hole at the Banff Springs Golf Course. The approximate height of the ball during a shot can be represented by the formula:
$h=-5 t^{2}+25 t+30$
Where $\mathrm{t}=$ time in seconds, and $\mathrm{h}=$ height of the ball, in meters
a) Write the formula in factored form.
b) What is the height of the golf ball after 2.5 s ?

## Homework:

