\qquad Block: \qquad

Chapter 4.2: Exponent Laws (Integral Exponents)

Focus on:

- Applying the exponent laws to expressions using rational numbers or variables as bases and integers as exponents
- Converting a power with a negative exponent to an equivalent power with a positive exponent
- Solving problems with integral exponents

Vocabulary:

Exponent: The number of times you \qquad the base in a power by itself.

Power: An expression made up of a \qquad and an \qquad .

Product: The result obtained by \qquad two or more numbers together.

Quotient: The result of \qquad of one number by another.

Sum: The result of \qquad of numbers.

Difference: The result from \qquad of numbers.

Exponent Laws (P.164)

1. Product of Powers

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

- Add the exponents

2. Quotient of Powers

- Subtract the exponents

$$
\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0
$$

3. Power of a Power

- Multiply the exponents

4. Power of a Product

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

- Distribute the exponent to the different bases

5. Power of a Quotient

- Distribute the exponent to the different bases

$$
(a b)^{m}=a^{m} b^{m}
$$

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Example 1: Simplify as a power with a positive single exponent.
a) $\left(0.8^{2}\right)\left(0.8^{-7}\right)$
b) $\left(0.3^{-3}\right)\left(0.3^{5}\right)$
c) $2^{2}+3^{2}$

Example 2: Simplify as a power with a positive single exponent.
a) $\frac{4^{3}}{4^{2}}$
b) $\frac{\left(2^{2}\right)(2)}{2^{4}}$
c) $3^{2}-2^{2}$

Example 3: Simplify as a power with a positive single exponent.
a) $\left(n^{2}\right)^{3}$
b) $\left(n^{-4}\right)^{-3}$
c) $\left(x^{2} y\right)^{3}$

Exponent Laws (P.164)

6.Powers with Negative Exponents

When x is any non-zero number and n is a rational number, x^{-n} is the reciprocal of x^{n}.

That is, $x^{-n}=\frac{1}{x^{n}}$ and $\frac{1}{x^{-n}}=x^{n}, x \neq 0$

7. Zero Exponent Law

- Anything to the power of $0=1$
- Example: $2^{0}=$?

Example 4: Evaluate

a) 412^{0}
b) 80°
c) $\left(x^{3} y^{2} z^{2}\right)^{0}$
d) 8^{-2}
e) $(2 \times 3)^{-2}$
f) $(-3)^{4} \times 4^{-2}$

Example 5: Simplifying Algebraic Expressions

Simplify the following algebraic expressions.
a) $\frac{\left(x^{3}\right)\left(x^{4}\right)}{x^{-2}}$
b) $\left(x^{3} y^{2}\right)\left(x^{2} y^{4}\right)$
c) $\left(m^{4} n^{-2}\right)\left(m^{2} n^{-3}\right)$
d) $\frac{\left(6 x^{4} y^{3}\right)}{14 x y^{2}}$

Example 6: Combining All the Rules

Simplify the following algebraic expressions.
a) $\left(\frac{a^{-3} b}{c^{2}}\right)^{-4} \cdot\left(\frac{c^{5}}{a^{4} b^{-3}}\right)^{-1}$
b) $\frac{\left(2 a^{-1} b^{4} c^{-3}\right)^{-2}}{\left(4 a^{2} b c^{-4}\right)^{2}}$

Example 7: Apply Powers with Integral Exponents

It is estimated that there are 117 billion grasshoppers in an area of $39000 \mathrm{~km}^{2}$ of Saskatchewan.
Approximately how many grasshoppers are there per square kilometer?

Homework:

```
P. 169 #1, 2, 3
\#4, 5, 6 (pick 3)
\# 7, 8, 9, 10, 12, 13, 20
```

