m

10

 $m \perp n$

exponent

or power)

base

(or index.

Chapter 4.2: Exponent Laws (Integral Exponents)

Focus on:

- Applying the exponent laws to expressions using rational numbers or variables as bases and integers as exponents
- Converting a power with a negative exponent to an equivalent power with a positive exponent ٠
- Solving problems with integral exponents

Vocabulary:

Exponent: The number of times you ______ the base in a power by itself.

Power: An expression made up of a _____ and an _____ .

Product: The result obtained by ______ two or more numbers together.

Quotient: The result of ______ of one number by another.

Sum: The result of ______ of numbers.

Difference: The result from ______ of numbers.

Exponent Laws (P.164)

- 1. Product of Powers
 - Add the exponents
- 2. Quotient of Powers
 - Subtract the exponents
- 3. Power of a Power
 - Multiply the exponents
- 4. Power of a Product
 - Distribute the exponent to the different bases
- 5. Power of a Quotient
 - Distribute the exponent to the different bases

$$a^{m} \cdot a^{n} = a^{m+n}$$
$$\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$$
$$(a^{m})^{n} = a^{mm}$$
$$(ab)^{m} = a^{m}b^{m}$$
$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

Example 1: Simplify as a power with a positive single exponent.

a) $(0.8^2)(0.8^{-7})$ **b)** $(0.3^{-3})(0.3^5)$ **c)** $2^2 + 3^2$

Example 2: Simplify as a power with a positive single exponent.

a)
$$\frac{4^3}{4^2}$$
 b) $\frac{(2^2)(2)}{2^4}$ c) $3^2 - 2^2$

Example 3: Simplify as a power with a positive single exponent.

a)
$$(n^2)^3$$
 b) $(n^{-4})^{-3}$ c) $(x^2y)^3$

Exponent Laws (P.164)

6.Powers with Negative Exponents	7. Zero Exponent Law
When <i>x</i> is any non-zero number and <i>n</i> is a rational number, x^{-n} is the reciprocal of x^n .	 Anything to the power of 0 = 1 Example: 2⁰ = ?
That is, $x^{-n} = \frac{1}{x^n}$ and $\frac{1}{x^{-n}} = x^n$, $x \neq 0$ Example 4: Evaluate	
a) 412 ⁰ b) 80 ⁰	c) $(x^3y^2z^2)^0$

d)
$$8^{-2}$$
 e) $(2 \times 3)^{-2}$ f) $(-3)^4 \times 4^{-2}$

Example 5: Simplifying Algebraic Expressions

Simplify the following algebraic expressions.

a)
$$\frac{(x^3)(x^4)}{x^{-2}}$$
 b) $(x^3y^2)(x^2y^4)$

c)
$$(m^4 n^{-2})(m^2 n^{-3})$$
 d) $\frac{(6x^4 y^3)}{14xy^2}$

Example 6: Combining All the Rules

Simplify the following algebraic expressions.

a)
$$\left(\frac{a^{-3}b}{c^2}\right)^{-4} \cdot \left(\frac{c^5}{a^4b^{-3}}\right)^{-1}$$
 b) $\frac{(2a^{-1}b^4c^{-3})^{-2}}{(4a^2bc^{-4})^2}$

Example 7: Apply Powers with Integral Exponents

It is estimated that there are 117 billion grasshoppers in an area of 39000 km² of Saskatchewan. Approximately how many grasshoppers are there per square kilometer?

Homework:

P. 169 #1, 2, 3

#4, 5, 6 (pick 3)

7, 8, 9, 10, 12, 13, 20

Quiz next class!! (4.1 - 4.2)