\qquad Date: \qquad Block: \qquad

Chapter 4: Exponents and Radicals

4.1: Perfect Squares, Cubes, and Prime Factorization

Perfect Square Number: Any whole number that has two equal factors.
Square Root: One of the two equal factors of a perfect square number.

Example:

Practice:

1. Find the side length of a square whose area is $25 \mathrm{~cm}^{2}$. Include a diagram, equation, and sentence in your answer.

Perfect Cube Number: Any whole number that has three equal factors.
Cube Root: One of the three equal factors of a perfect cube number.

Example:

Practice:

1. Find the edge length of a cube whose volume is $216 \mathrm{~cm}^{3}$. Include a diagram, equation, and sentence in your answer.
2. The uranium that Saskatchewan produces in a year has a volume of about $512 \mathrm{~m}^{3}$. If this volume were made into a single cube, what would be the dimensions of the cube?

Prime Factorization

Prime Number: A prime number has only two factors: \qquad and itself.

Prime Factorization: Writing a number as a product of its prime factors

Create a Factor Tree:

Find the prime factors of:

Example 1: Identify Perfect Squares and Perfect Cubes

State whether each of the following numbers is a perfect square, a perfect cube, both, or neither (and use prime factorization to show your thinking).
a) 121
b) 729
c) 356

Example 2: Solve Square Roots and Cube Roots

Solve the following using prime factorization.
a) $\sqrt[3]{125}$
b) $\sqrt{196}$
c) $\sqrt[3]{4096}$

Homework:

P. 158 \#1-8 (pick 3)
\#11, 12, 14, 16, 18

